Please find below my comments on the manuscript MA 9615314.

This work describes the reactivity of MA and similar analogues towards 1-phenylethyl radical which has been used as a model compound for polystyryl radical. The comparison indicates that the reactivity of MA and similar analogues are more reactive towards 1-phenylethyl radical than polystyryl radical. The authors have tried to explain this difference, by considering complex participation, solvent effect, steric and penultimate effect. Finally they conclude that the penultimate effect of steric origin is responsible for the higher selectivity toward 1-phenylethyl radical.

End group method of Bevington has been used in a number of systems, and also the penultimate effect has been reported earlier, by the end group method in styrene acrylonitrile system. Hence, this work can not be considered as novel or very important. Although the authors conclude that the reason for the higher selectivity of MA and similar analogues toward 1-phenylethyl radical is due to the penultimate effect, it locks that the choice of the model compound may not the right one for the system studied.

The value of kMA/kS has been calculated from the values reported for St/MMA system and for the MA/MMA system (from the present study) as per the relation given in the text. In such case the role of the complex between MA and similar analogues with MMA in enhancing the observed selectivity is not clear.

Although the paper is well written, it does not acquire the standard of Macromolecules; it may be recommended for communicating to other journals like Polymer, JPS (Chemistry). Introduction is too lengthy (7 pages) and can be shortened to around three pages.

Originality, technical quality and clarity of presentation; good. Importance to the field; fair.